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a b s t r a c t

The paramagnetic contributions to water-proton-spin–lattice relaxation rate constants in protein
systems spin-labeled with nitroxide radicals were re-examined. As noted by others, the strength of the
dipolar coupling between water protons and the protein-bound nitroxide radical often appears to be lar-
ger than physically reasonable when the relaxation is assumed to be controlled by 3-dimensional diffu-
sive processes in the vicinity of the spin label. We examine the effects of the surface in biasing the
diffusive exploration of the radical region and derive a relaxation model that incorporates 2-dimensional
dynamics at the interfacial layer. However, we find that the local 2-dimensional dynamics changes the
shape of the relaxation dispersion profile but does not necessarily reproduce the low-field relaxation effi-
ciency found by experiment. We examine the contributions of long-range dipolar couplings between the
paramagnetic center and protein-bound-water molecules and find that the contributions from these sev-
eral long range couplings may be competitive with translational contributions because the correlation
time for global rotation of the protein is approximately 1000 times longer than that for the diffusive
motion of water at the interfacial region. As a result the electron–proton dipolar coupling to rare pro-
tein-bound-water-molecule protons may be significant for protein systems that accommodate long-
lived-water molecules. Although the estimate of local diffusion coefficients is not seriously compromised
because it derives from the Larmor frequency dependence, these several contributions confound efforts
to fit relaxation data quantitatively with unique models.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Liquid dynamics at surfaces and macromolecular interfaces may
impact the efficiency of surface exploration, intermolecular recogni-
tion and macromolecular function. Nuclear spin–lattice relaxation
rates of liquid spins measured as a function of magnetic field
strength provide a characterization of the molecular rotational and
translational dynamics. The difficulty in characterizing surface
dynamics by magnetic resonance is that the population of molecules
at the interface generally mixes by exchange with the total popula-
tion of observed molecules in a time short compared with the relax-
ation times in either environment. This mixing dilutes and averages
the surface dynamics of the observed molecule spins with those of
the bulk; however, an approach to characterizing surface dynamics
is to localize a paramagnetic center on the interface and measure
the paramagnetic contribution to the total observed spin–lattice
relaxation rate constant. The electron–nuclear dipolar contribution
to the relaxation is generally large compared with the diamagnetic
contributions and also falls rapidly with distance from the paramag-
netic center. Thus, the motions of the observed diffusing molecule
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relative to the surface localized paramagnet may be characterized
in the immediate vicinity of the paramagnetic center [1–4]. In these
cases, the spectral density functions needed for the intermolecular
electron–nuclear relaxation equations are generally derived from
translational diffusion models [5–7]. Although the translational
correlation times or diffusion constants for relative motion of water
in the vicinity of the surface bound paramagnetic centers deduced
from these measurements using relaxation equations derived for
3-dimensional diffusion of the interacting spins are not in significant
disagreement with other measurements, the protein case does not
always provide a satisfying quantitative fit for the relaxation data
with physically reasonable parameters. In particular, for a protein
spin-labeled with a nitroxide, the nuclear spin–lattice-relaxation
data fit to a 3-dimensional diffusion model often yields a distance
of closest approach that is short compared with the sum of van der
Waals distances of the interacting atoms; i.e., the apparent strength
of the electron–nuclear dipolar coupling is too large. Understanding
the origin of this problem is important to understanding both the lo-
cal translational dynamics of small diffusing solutes or solvents in
interfacial regions and the use of paramagnetic additives as relaxa-
tion or contrast agents in medical imaging and other applications.
This paper examines the origins of this larger than expected dipolar
coupling strength for the paramagnetic contributions to water-pro-
ton relaxation in protein solutions.
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In the case that the paramagnetic center is not chemically
bound to the molecule observed in the relaxation experiment,
the electron–nuclear dipolar coupling between a paramagnet and
the observed protons in solution is made time dependent by the
relative translational motion of the diffusing molecules. If the elec-
tron-spin relaxation times are short compared with the transla-
tional correlation time, as in many metal ion systems, the dipolar
coupling may fluctuate with the relaxation time of the electron
spin [6]; however, if the electron-relaxation time is long compared
with these correlation times, the spin state of the electron is essen-
tially constant on the time scale for diffusion and the relative
translational motion dominates the fluctuations that drive the nu-
clear spin relaxation [5,7]. For nitroxide radicals, the electron-
relaxation times are long and easily satisfy the criteria for analysis
of relaxation dispersion profiles using diffusion models that do not
include electron-spin relaxation.

The nuclear relaxation models generally used were derived
assuming that the nuclear accessibility to the electron spin is uni-
form from all directions. However, if the paramagnetic center is lo-
cated at an interface, the accessibility may be asymmetric because
the macromolecule or surface excludes approach from some direc-
tions. For example, for an electron located on a plane surface, a
nuclear spin would suffer a relaxation rate reduction by a factor
of 2 because the electron spin may be approached by the nuclear
spin from only one side of the plane. Therefore, the relaxation effi-
ciency of a spin-labeled macromolecule may be a function of how
closely and how rigidly the paramagnetic center is bound to the
surface because of this geometric factor [8–10].

A different issue for spin relaxation at interfaces is the character
of the diffusive process itself. If the paramagnet is attached suffi-
ciently close to the surface, the diffusion of the exploring molecule
is biased by the close proximity of the excluded volume imposed
by the surface, and the time dependence of the re-encounter prob-
ability between the nucleus and the paramagnet is proportional to
1/t. As a consequence, the spectral density functions characterizing
this motion are logarithmic in the Larmor frequency [11]. The log-
arithmic magnetic field dependence of the spin–lattice relaxation
rate has been observed in high surface area inorganic systems,
but recent data suggest that these observations are more general
and found in protein systems as well [12,13]. For a protein in solu-
tion, the spectral density formulation is slightly different from that
of a lamellar solid structure and we explore the solution case in the
present work to determine whether the change in dimensionality
of diffusive exploration at the interface may account for the appar-
ent increase in the electron–nuclear dipolar coupling strength. We
will show that the main consequence of 2-dimensional diffusive
exploration at the interface is to change the shape of the relaxation
dispersion profile but not change the magnitude of the low-field
relaxation rate very much unless the surface lifetimes are very
long. We show that the discrepancy in the apparent dipolar cou-
pling strength may be resolved by considering the effects of
long-range dipolar coupling between the protein-bound paramag-
net and protons of rare protein-bound-water molecules that reori-
ent with the slow rotational motion of the protein.
2. Experimental

The nuclear spin–lattice-relaxation-rate constants were mea-
sured at proton Larmor frequencies between 0.01 and 30 MHz
using a Stelar FFC-2000 spectrometer (Stelar, Mede, Italy) that
switches rapidly from a large polarization field, typically 30 MHz,
to a variable evolution field and finally to a convenient detection
field to provide a relaxation dispersion profile over a wide range
of field strengths at essentially a constant signal-to-noise ratio.
Free induction decays were recorded after a single 90� excitation
pulse (5.5 ls) applied at 15.8 MHz. Sample temperatures were reg-
ulated at 25 �C using a Stelar VTC90 variable temperature control-
ler. 1H relaxation rate constants between 36 and 300 MHz were
measured using the fringe field of a 7.05 T magnet (Magnex Scien-
tific, Oxford, UK) operating in conjunction with a Tecmag Apollo
transceiver (Tecmag, Houston, TX), an AMT power amplifier
(American Microwave Technologies, Brea, CA) and a transmission
line probe constructed in this laboratory [14].

BSA (Fraction V, Sigma–Aldrich) used for non-covalent spin-
labeling with 5-DOXYL-stearic acid (Aldrich Chemical Co., bought
as a powder) was purified by dialysis against deionized water, then
lyophilized to constant weight at ambient temperature using a
mechanical pump. Phosphate buffer (20 mM, pH 7) was prepared
using sodium phosphate dibasic (Fisher Scientific) and phosphoric
acid (Mallinckrodt). Chloroform was purchased from Sigma–
Aldrich. The solution of BSA with non-covalently bound 5-DOXYL-
stearic acid was prepared as described by Ge et al. (1990, #116).
Bovine Serum Albumin with blocked SH-groups was prepared by
combining 5 ml of 1.6 mM BSA (used without preliminary purifica-
tion) in 50 mM HEPES (sodium salt, Sigma) buffer at pH 7.8 with ex-
cess of methylmethanethiol-sulfonate (Aldrich, 97%) dissolved in
600 lL of dimethylformamide (Fisher Scientific) and incubated at
30 �C overnight followed by dialysis against 0.15 M sodium chloride
solution, then against deionized water. The resulting sample was
lyophilized to constant weight at ambient temperature. Sulfhydryl
content was monitored using Ellman’s reaction with native and
modified BSA samples (DTNB and L-cysteine from Sigma Chemical
Co.) in 0.1 M phosphate buffer at pH 8 in conjunction with freshly
prepared cysteine standards for calibration and a Varian Cary 4E
operating at 412 nm. This procedure confirmed the absence of
SH-groups in the modified BSA and the presence of approximately
0.5 mol of SH groups per mole of unmodified commercial protein.

BSA, SH-blocked BSA, and ribonuclease A were spin-labeled
with 4-maleimide-TEMPO (Aldrich Chemical Co., St. Louis, MO)
using 2-fold molar excess of spin-label in 50 mM phosphate buffer
at pH 8 overnight at laboratory temperature. Each protein solution
was then dialyzed exhaustively to remove unbound spin-label and
lyophilized to constant weight.

CW electron spin resonance measurements were conducted
using a Varian E-line 102 Series X-band spectrometer equipped
with a Miteq microwave preamplifier (Hauppauque, NY, USA). All
spectra were collected at a nominal microwave power of 2.0 mW
and 1.0 G modulation amplitude. Calibration plots were obtained
using the integrated intensities of EPR absorption signals from
the nitroxide spin standards prepared from 4-hydroxy-TEMPO
(Aldrich Chemical Co.). Concentrations of the standard solutions
were verified by measuring their optical absorption at 429 nm
(e = 13.4 M�1 cm�1) [15,16]. In order to improve accuracy nitroxide
standards were prepared to contain up to 84% glycerol by weight
so that line widths and amplitudes of the EPR signal in standards
and protein-bound samples were comparable.
3. Results

ESR spectrum for bovine serum albumin labeled with the
5-DOXYL-stearic acid spin label (5-DSA), which binds to the fatty
acid binding sites of bovine serum albumin (BSA) is shown in
Fig. 1, curve A. This spectrum reproduces well that reported by
Ge and others who concluded that the ESR spectrum for the nitrox-
ide bound in these sites showed minimal local flexibility for the
spin label [17,18]. This spin label was used for the present study
to place the spin label in the interface with minimal bound-state
flexibility. The relaxation dispersion profile for this sample is
shown in Fig. 2 curve A and this strong immobilization gives the
highest relaxivity of the several spin-labeled proteins studied.
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Fig. 1. X-band ESR spectra. (A) Bovine serum albumin with non-covalently bound 5-doxyl steric acid spin-label; (B) bovine serum albumin spin-labeled with maleimide-
TEMPO covalently bound to cysteine SH; (C) bovine serum albumin spin-labeled with maleimide-TEMPO covalently bound to lysine (SH blocked); and (D) ribonuclease A
spin-labeled with maleimide-TEMPO at lysine.
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Fig. 2. The paramagnetic contribution to the water proton spin–lattice relaxivities
as a function of magnetic field strength plotted as the 1H Larmor frequency at 298 K.
(A) Bovine serum albumin spin-labeled with 5-doxyl stearic acid; (B) bovine serum
albumin with 1 equivalent of maleimide-TEMPO; (C) bovine serum albumin with
blocked SH and 1 equivalent of maleimide-TEMPO; and (D) ribonuclease A spin-
labeled with maleimide-TEMPO.
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Curves B and C of Figs. 1 and 2 summarize data taken on bovine
serum albumin spin-labeled with maleimide-TEMPO and BSA with
blocked SH-groups spin labeled with maleimide-TEMPO which is
similar to earlier work [19]. The relaxivity of these modifications
is lower in part because the coupling tether is longer than that
for curve A. The ESR spectrum for ribonuclease A, curve D of
Fig. 1 is relatively narrow and the flexibility of the spin-label is
high [20]. The water proton relaxivity shown in curve D of Fig. 2
is the lowest among the samples shown.

The paramagnetic contribution to the water-proton–spin–lat-
tice-relaxation-rate constant spin-labeled with 5-DSA is large for
a spin ½ system. The paramagnetic contribution to the relaxation
profile has a low field plateau and a dispersion that is stretched
considerably compared with the Lorentzian functions characteris-
tic of rotationally correlated first coordination sphere effects [21].
As in earlier reports [3], a fit of these data to the 3-dimensional dif-
fusion model [6,7] yields a distance of closest approach that is
shorter than the sum of van der Waals radii for the nitrogen or oxy-
gen atom of the nitroxide and the water-molecule-hydrogen atom.
Therefore, there are additional factors or mechanisms that contrib-
ute to the observed water-proton relaxation rate constant in these
solutions of spin-labeled albumin.

It was recently suggested that at the water–protein interface,
the effective dimensionality for the diffusive exploration of the
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protein by water is reduced with the consequence that the relaxa-
tion dispersion profile becomes a linear function of the logarithm
of the Larmor frequency [12]. A change in dimensionality from 3
to 2 causes an increase in the re-encounter probability between
the diffusing nuclear spin and the electron spin that is fixed at
the surface with a consequent change in the relaxation dispersion
profile compared with the 3-dimensional case. We examine first
the effects of diffusive dimensionality on the magnitude and mag-
netic field dependence of the water proton spin–lattice relaxation
rate.
4. Relaxation theory for 2-dimensional surface effects

Spatially confined systems force more frequent re-encounters
between diffusing liquid molecules and surface paramagnetic
relaxation sinks. In the fast exchange limit where the exchange
time between the surface and the bulk phases is shorter than the
relaxation times in either environment, the overall proton relaxa-
tion rate 1/T1 is a weighted sum of a bulk 1/T1,bulk and a surface
relaxation rate [22]. For a paramagnet immobilized on a protein,
we assume that the surface relaxation rate is a superposition of
the contribution 1/T1,2D of the proton species diffusing in the prox-
imity of the immobilized paramagnetic species and the contribu-
tion 1/T1M of the proton species coordinated to the paramagnetic
center, i.e., a first coordination sphere contribution [23],

1
T1ðxIÞ

¼ 1
T1;bulk

þ NSurf

N
1

T1;2DðxIÞ
þ NM

N
1

T1MðxIÞ
ð1Þ

The bulk diamagnetic relaxation term, 1/T1,bulk, has no magnetic
field dependence in the range studied here because the Larmor fre-
quencyxI is much smaller than the reciprocal of either the rotational
or translational correlation time for all accessible magnetic fields
[24]. We focus in this discussion on the outer sphere or diffusional
contribution to spin–lattice relaxation. For most organic radicals like
the nitroxides used here, there are no long-lived-water molecules in
a first coordination sphere like those provided by metals; therefore,
the electron–nuclear coupling is modulated by the relative transla-
tional motions of the two spin-bearing molecules and we drop the
Protein 
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Fig. A1. Schematic diagram of the model. The nuclear spins I diffuse in an infinite layer of thi
surface. The z-axis of the laboratory coordinate system (L) is parallel to the direction of the sta
(M). The cylindrical polar coordinatesq,/andz were used to conduct calculations in the (M) f
the two I- and S-spin-bearing molecules at the surface is d0 . To simplify calculations, th
q <1g and M2 ¼ f0 6 z 6 d and d0 6 q <1g. In the M2 domain spin I has diffusion m
last term of Eq. (1). The ratio NSurf =N ¼ kSpqliquid is the fraction of li-
quid molecules diffusing within a transient layer of thickness k at
the surface as shown in (Fig. A1); k is of the order of the molecular
diameters of the diffusing liquid [25], Sp is the specific surface area
of the system, N the total number of molecules in the system, and qli-

quid is the density of the proton liquid. Assuming a uniform distribu-
tion of paramagnetic sites on the surface, the surface density
rS ¼ ðgSqsolidnÞ ¼ Ns=Ap;where gS, the number of paramagnetic spe-
cies per gram of protein, may be measured by electron spin reso-
nance methods, n the effective surface depth, Ns is the number of
spins per protein molecule, and Ap the surface area of the protein.

We consider a proton bearing liquid diffusing in the proximity
of the protein–liquid interface. Although we suppose that the
interface is locally flat (Fig. A1), we have shown that the frequency
dependence is similar in a thin spherical layered geometry [12].
Because the magnetic moment of the paramagnetic species is large
(cS = 658.2 cH), the nuclear spin–lattice relaxation is dominated by
the intermolecular dipolar coupling between the electron spins, S,
that is modulated by the translational diffusion of the mobile spins,
I, in the interface of the slowly moving macromolecule. The inter-
facial nuclear spin–lattice relaxation rate constant is given for-
mally by the general expression:

1
T1;2DðxIÞ

¼ 2
3
ðcIcS�hÞ

2SðSþ 1Þ 1
3

Jð0ÞL ðxI �xSÞ þ Jð1ÞL ðxIÞ
�

þ2Jð2ÞL ðxI þxSÞ
i

ð2Þ

where the Larmor frequencies of the electron and proton are related
by xS = 658.2xI when I is 1H. The spectral densities JðmÞL ðxÞ (m = 0,
±1, ±2), in the laboratory frame (L) associated with the constant
magnetic field B0 (Fig. A1) are the exponential Fourier transforms

JðmÞL ðxÞ ¼
Z þ1

�1
GðmÞL ðsÞe�ixsds ð3Þ

of the stationary pair-wise dipolar correlation functions
GðmÞL ðsÞfm 2 �2;þ2g given by:
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ckness k in the dipolar field of a very small quantity of paramagnetic spins S fixed on the
tic magnetic field B0 and constitutes angleb with the z-axis of the molecular axis system
rame. The smallestvalueofqandz correspondingto the distance of minimal approach of
e diffusion layer k was subdivided into two domains: M1 ¼ fd 6 z 6 k and 0 6
otions restricted within a single layer of molecular size d.
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Eq. (4) describes the persistence of the autocorrelation of the di-
pole–dipole interaction FðmÞL ðtÞ between the magnetic moments
associated with the spins I and S and modulated by the translational
diffusion during a short time interval s. The notation h. . .i stands for
the ensemble average over all the positions of the spins I at time 0
and s for a given surface density rS of spins S. This ensemble aver-
age can be expressed as an integral average over the normalized dif-
fusive propagator P(r0, r, s):

GðmÞL ðsÞ ¼
Z

d~r0pð~r0ÞFð�mÞ
L ð0Þ

Z
d~rPð~r0;~r; sÞFð�mÞ

L � ðsÞ ð5Þ

where p(r0) = rS/k represents the uniform density of spin pairs I–S
at equilibrium. The calculations of Eq. (5) include the following
steps as summarized in Appendix A.

(i) We use the anisotropic dynamical model shown schemati-
cally in Fig. A1 with an unbounded and isotropic diffusion per-
pendicular to the surface normal axis n and a bounded
diffusion along such an axis. We consider an axial diffusion
tensor where DI==andDI? are the coefficients of translational
diffusion of spins I in direction parallel and perpendicular to n.

(ii) We estimate the pair-wise dipolar correlation functions
GðmÞL ðsÞ for times s much longer than the transverse diffusion
correlation time sm ¼ d2=ð4DI?Þwhere d is the molecular size
of the I spin-bearing molecule with a translational diffusion
coefficient DI? in direction perpendicular to n.

(iii) We introduce the effects of the finite time of residence
sS� sm at the protein surface by an exponential cut-off in
the time dependence of the pair correlations I–S.

(iv) We take a powder average of JðmÞL ðxÞ over all the orientations
of the n direction relative to the constant direction of the
magnetic field B0.

Substitution of Eq. (A10) into Eq. (2) leads, at frequencies small
compared with the reciprocal of the translational correlation time,
to the spin–lattice relaxation rate of the 2-dimensional diffusion of
water in proximity to the protein surface:

1
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Here x = dd0 is a parameter introduced in Appendix A for taking into
account a variable distance d0 of minimal approach between spins I
and S compared to the molecular size d. Eq. (6) has a bi-logarithmic
dependence on the magnetic field strength caused by the contribu-
tions at the nuclear and electron Larmor frequencies. Eq. (6) con-
tains two correlation times: the translational correlation time, sm,
associated with individual translational jumps by molecules in the
interface, and the residence time of the observed molecules in the
interface, ss. ss limits the correlation between the I and S spins in
the 2-dimensional interfacial layer.

Finally, substitution of Eq. (6) into Eq. (1) with NSurf =N ¼ kSP

cPqliquid where cP is the mass of protein per mass of liquid, and ignor-
ing first coordination sphere contributions gives the spin–lattice
relaxation rate constant for molecules mixing between the spin-la-
beled surface layer and the bulk:
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If we use the definition of the 2D translational correlation time
sm ¼ d2=ð4DI?Þ and write this equation in terms relevant to the
solution where the molecular properties of the spin-labeled pro-
tein are known as shown in Appendix B:
1
T1ðxIÞ

¼ 1
T1;bulk

þ p
60
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where NA is Avogadro constant and [S] is the molar spin
concentration.

This model accounts for the paramagnetic relaxation associated
with the interfacial layer, but not with diffusion of the observed
molecules outside the interfacial layer. Therefore, we add a contri-
bution using the 3-dimensional model with a distance of closest
approach that starts at the outside of the surface layer and extends
to infinity [5–7]. This long range 3-dimensional contribution adds a
non-logarithmic term to the magnetic field dependence. We note
that a nearly logarithmic dependence has been previously reported
for spin-labeled hemoglobin which was analyzed in terms of a dis-
tribution of local sticking times [13]. While a distribution of inter-
facial water interactions is likely, the effects of 2-dimensional
diffusive exploration may be at least as important.
5. Comparison with experiment

Curve 1 of Fig. 3B shows the 3-dimensional model computed for a
1 mM solution of a spin-1/2 radical with long electron relaxation
time using the model of Hwang and Freed [7] with the distance of
closest approach set at 5.6 Å, i.e., outside the first surface layer, and
the translational diffusion constant at 6 � 10�6 cm2 s�1. Curve 2 of
Fig. 3B shows the contribution from 3-dimensional diffusion with
the distance of closest approach set at 2.6 Å and the translational dif-
fusion constant set at 6 � 10�6 cm2 s�1, i.e., no surface layer exclu-
sion. In neither case was a geometrical factor used to compensate
for the difficulty of approach from the surface side. Both curves are
well below the magnitude of the observed experimental data set.
Curves 3 and 4 are just 2-dimensional contributions computed from
Eq. (8) with the translational jump time sm = 33 ps and ss = 2 ns and
8 ns respectively. The logarithmic dependence is apparent in the
transition region of the profile, and the position and amplitude of
the low-frequency plateau is determined by the surface residence
time. The sum of curves 1 and 4 provides a model where the surface
layer is constrained to an effective 2-dimensional motion; outside
this layer, the motion is effectively 3-dimensional. Nevertheless,
with this choice of the surface residence time, the low field rate con-
stant is not very different from the 3-dimensional case alone; how-
ever, the shape in the transition region is different. The low field
rate constant increases with increasing surface residence time and
the logarithmic dependence extends to lower magnetic field
strengths; however, there is not strong evidence for the surface res-
idence times significantly longer than a few ns. Nevertheless, neither
of the two curves provides a reasonable approximation to the data in
Fig. 2, curves A–C; an additional relaxation pathway for the para-
magnetic contribution is required.

A unique feature of many proteins is that there may be long-
lived water binding sites. The number of long-lived water sites is
small compared to the total number of water contacts with the
protein and is usually in the range 0–3 water molecules/10 kD as
measured by the solution phase MRD on the diamagnetic protein
[26,27]. The actual measurement gives the product NS2 where S
is the generalized order parameter 0 < S < 1, and N is the number
of bound molecules. For bovine serum albumin NS2 is 25 ± 3,
[27,28]. The characteristics of these water molecules is that they
are bound to the protein for a time longer than the rotational cor-
relation time of the protein; i.e., at least 100 ns for albumin. In the
present context a critical feature of these long-lived protein-
bound-water molecules is that the protons may have a dipolar cou-
pling to the electron magnetic moment. In addition, if the electron
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Fig. 3. (A) 1.2 mM ribonuclease A spin-labeled with maleimide-TEMPO fit with the
3-dimensional diffusion model only using a distance of closest approach, b = 2.5 Å
and a translational diffusion constant D = 9.7 � 10�6 cm2 s�1. (B) The data of
Fig. 1(A) for 0.6 mM spin-labeled BSA fit in various ways: (1) just 3-dimensional
diffusion with b = 5.6 Å and D = 6 � 10�6 cm2 s�1; (2) just 3-dimensional diffusion
with b = 2.6 � 10�8 and D = 6 � 10�6 cm2 s�1; (3) just the 2-dimensionial diffusion
contribution with sm = 33 ps and ss = 2 ns; (4) just 2-dimensional diffusion contri-
bution with sm = 33 ps and ss = 8 ns. The solid line at the top is a sum of
contributions 1 and 4 with the rotationally correlated contribution assuming a
correlation time of 45 ns, S2 = 0.1, and a fast correlation time of 5 ns where N = 38
and the unrealistic assumption that all water spins are 8 Å from the paramagnet.
These parameters are not unique.
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relaxation time is long as it is for organic radicals, the correlation
time for this dipolar coupling is the slow global rotational correla-
(A)

Fig. 4. (A) Paramagnetic relaxation contributions from rotationally correlated coupling be
of the proton Larmor frequency. Rotational correlation times are 20, 50, and 100 ns incre
moment distance is set to 8 Å. (B) Paramagnetic relaxation contributions from rotationally
molecule at a proton Larmor frequency of 100 kHz as a function of inter-moment dista
exchange is 106 s�1.
tion time of the protein. The relaxation equations for rotationally
correlated electron–nuclear coupling usually referred to as the
Solomon, Bloembergen, Morgan equations are widely known [21]
and not reproduced here; we note that the relaxation rate constant
is the sum of Lorentzian terms and the efficiency is proportional to
the correlation time and inversely proportional to the sixth power
of the inter-moment distance. Although the inter-moment distance
for an electron coupling to a long-lived water molecule proton may
exceed 10 Å, which would make the contribution small, the rota-
tional correlation time for the protein is of order 50 ns, which is
on the order of 1000 times the relative translational correlation
times for the solvent in the interfacial region. Thus, even water
molecules distant from the spin label may make detectable contri-
butions to the total paramagnetic relaxation rate constant that add
to the translational contribution. Fig. 4A shows the magnetic field
dependence of the rotationally correlated water proton coupling to
a nitroxide bound to serum albumin normalized to 1 mM of spin-
labeled protein computed assuming a correlation time of 50 ns.
The low field portion of the dispersion is incomplete because very
low nuclear Larmor frequencies are necessary to display the low
field plateau. Taking the nuclear Larmor frequency at 100 kHz,
Fig. 4B shows the magnitude of the rotationally correlated contri-
bution of protein-bound nitroxide as a function of inter-moment
distance. Although the contribution falls rapidly with distance,
the long correlation times make the contributions competitive
with the translational contribution. The dashed lines in Fig. 4B
show the relaxation rate constant for a distance of 8 Å at field
strength corresponding to a proton resonance frequency of
100 kHz; this calculation of 0.26 s�1 is normalized per mM of pro-
tein-bound-water molecules. For a water-rich protein like albumin,
this relaxation contribution depends on the distance to each bound
water molecule, but there will be at least 25 potentially contribut-
ing water molecules for the BSA case. For some proteins, therefore,
a rotationally correlated contribution to the water-proton-elec-
tron-relaxation rate may be quite important and adds a Lorentzian
contribution to the relaxation dispersion at the rotational correla-
tion time of the protein. This contribution may directly account for
the large relaxation rates at low magnetic field as shown in Fig. 2
but not modeled satisfactorily by diffusion contributions alone.

In summary, there are possibly four different contributions to the
paramagnetic relaxation rate constant for water protons in a solu-
tion of a protein spin-labeled with a long T1e paramagnet: (1) the sur-
face 2-dimensional diffusion contribution; (2) the 3-dimensional
diffusion contribution; (3) the possible effects of a distribution of
(B)

tween a protein-bound nitroxide and a protein-bound-water molecule as a function
asing from bottom to top, the protein concentration is set at 1.0 mM, and the inter-
correlated coupling between a protein-bound nitroxide and a protein-bound-water

nce assuming that the rotational correlation time is 50 ns and the water-molecule
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surface correlation times; and (4) the effects of electron–nuclear
dipolar couplings modulated by the slow stochastic rotation of the
protein. This list creates a number of difficulties for obtaining satis-
factory quantitative analysis of the experimental data: (1) The sev-
eral contributions to the observed relaxation profile have different
shapes as a function of Larmor frequency but there are no sharp fea-
tures that make fitting sums of contributions particularly reliable or
unique. (2) Generally, one does not know either the number or the
distances between the bound paramagnetic center and the rare
bound water molecules in the protein so that one cannot compute
a discrete sum of contributions in building a quantitative relaxation
equation. (3) Any distribution associated with the diffusive behavior
in the interface whether it is lifetimes or effective diffusion constants
that vary because of the surface heterogeneity additionally confound
quantitative description with parameters that may not be unique.

Recognizing these difficulties, inclusion of a rotationally corre-
lated contribution that assumes the rotational correlation time of
the protein with an adjustable scaling parameter for the amplitude
improves the fit to the relaxation data in Fig. 2, but reveals addi-
tional features. An adjustable scaling parameter is necessary be-
cause we do not know the number of or the precise distances
between the bound-water molecules and the nitroxide. Neverthe-
less, there are still significant discrepancies at the highest frequen-
cies. This observation is expected if one considers that a long-lived-
bound water molecule may experience some local motion in the
binding site, which reduces the magnitude of the low-field relaxa-
tion rate in proportion to S2 and adds a small high frequency dis-
persion [29,30]. A similar deviation is expected if some water
molecules near the paramagnet have bound-state lifetimes that
are shorter than the rotational correlation time of the protein. In
either case there will be a dispersion at a frequency characteristic
of the local motion or lifetime. Adding an adjustable Lorentzian
contribution to the relaxation equation to account for these local
effects yields the fit shown in Fig. 3B by the solid line at the top.
It is not possible to assign the high-field correlation time or times
uniquely; however, the contribution is in the range of 1–10 ns for
the data of Fig. 2 curve A.

In earlier studies of spin-labeled phospholipids and glass sur-
faces [4], the 3-dimensional model fits the data with reasonable
parameters. In the glass case [4], there is not likely to be a signifi-
cant population of long-lived-bound water molecules that would
provide a rotationally correlated coupling. In addition, the surface
binding tether used was not particularly short, so that the spin-
label was not precisely at the surface making water accessibility
to the spin label more uniform and 3-dimensional diffusion a more
likely dominant contribution to the electron–nuclear correlation
function. In the phospholipid case [1], three spin-labels were used
with similar results when analyzed using the 3-dimensional mod-
el. That analysis, we note, did not include a geometrical factor
which may be of order 0.5 for access to the spin label in a lipid
interfacial environment, which is also a cause for the large value
of the distance of closest approach. It is far less likely than in the
protein case that there are long-lived-water-molecule binding sites
at the lipid interface to provide long correlation times for the elec-
tron–nuclear coupling. Further, the relatively large amplitude mo-
tions of the lipid which are fast compared with the relaxation times
measured cause significant averaging of the orientation and dipo-
lar couplings.

Ribonuclease A is a small (13.7 kD) protein compared with bo-
vine serum albumin and solution phase MRD experiments show
that the coupling of the protein rotational motion to the water-
spin–lattice-relaxation time is weak [31,32]. Therefore, a rotation-
ally correlated paramagnetic contribution from protein-bound
water for spin-labeled ribonuclease A is expected to be much smal-
ler than for the BSA case for two reasons: the protein rotational
correlation time is approximately 5–10 times smaller and the
number of bound water molecules is smaller by a factor of order
25 for ribonuclease A. Figs. 1 and 2 show the ESR and MRD profiles
for Ribonuclease A labeled with a maleimide-TEMPO spin label.
The ESR spectrum is much narrower than that for spin-labeled
albumin indicating that motion of the nitroxide on the tether of
the protein is significant. The MRD profile is shifted to higher mag-
netic field strengths and fit well by the 3-dimensional diffusion
model only with a distance of closest approach of 2.5 Å as shown
by Fig. 3A. Therefore, the rotationally correlated contribution to
the paramagnetic relaxation is unimportant for spin-labeled ribo-
nuclease A which is consistent with the relative absence of long-
lived water binding sites on the protein. Further, this spin label is
not strongly localized at the surface as shown by the ESR spectrum
in Fig. 1D and a 2-dimensional diffusive contribution is not
detected.

The paramagnetic center may relax the protein protons includ-
ing labile protein protons and the relaxation effects transmitted to
the water proton pool by chemical exchange of protons. As in the
protein-bound-water exchange case, there will be a distribution
of distances between the labile protein protons and the nitroxide
such that the distant sites are unimportant. However, proton ex-
change from amino, amide, hydroxyl, and carboxyl sites in protein
functional groups are generally much slower than water-molecule
exchange but depends on pH. The relaxation rate contribution to
the water depends on the mean lifetime for exchange according
to the equation:

1
T1
� 1

T1o
¼ P

T1b þ sex

where T1b is the relaxation time of the bound and labile proton at the
protein site, and sex is the mean lifetime at the site. In the case where
the lifetime is large compared with the relaxation time of the bound
proton, the exchange time dominates the denominator and the total
contribution is small or negligible. Proton exchange rates in protein
systems are generally first order in hydroxide ion concentration so
that contributions from labile proton exchange may become more
important at high pH values and add to the paramagnetic water-
exchange-relaxation pathway in a similar way.
6. Conclusion

The analysis of paramagnetic contributions to nuclear spins re-
laxed by protein bound radicals with long electron-spin–lattice-
relaxation times in solution may be complicated by two additional
factors that may be unimportant in other cases. If the spin-label is
embedded in the surface, the geometrical constraints on diffusion
may reduce the dimensionality of the diffusive exploration process
and change the shape of the spin–lattice relaxation profile. The
importance of reduced dimensionality is greater the longer the dif-
fusing molecule is confined to the surface. If there are long-lived
small molecule binding sites on the protein, a rotationally correlated
relaxation contribution may be important even if the binding site is
at significant distance from the paramagnetic center because of the
large magnitude of the protein rotational correlation time compared
with the correlation times for relative diffusion of the spins. These
complications may make detailed quantitative interpretation of
paramagnetic effects on diffusing small molecules difficult and not
unique. Nevertheless, the magnetic field dependence of the water-
proton-spin–lattice-relaxation-rate constant in spin-labeled pro-
tein systems will still provide a reasonable assessment of the relative
correlation time for translational diffusion in the interfacial region
because the value of the diffusion coefficient is determined mostly
by the Larmor frequency dependence rather than the magnitude of
the relaxation rate constant. In the case that the paramagnetic center
is a metal ion, similar contributions may be important including
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contributions from long-lived water molecules at some distance
from the paramagnetic center. However, the effects from rotational
correlation may be truncated when the electron-spin–lattice-relax-
ation time is short compared with the global protein rotational cor-
relation time, which is the usual case for a protein-bound metal
system.
Two-dimensional effects are expected to be important for nanopar-
ticulate systems with paramagnetic sites and for molecularly dense
systems such as some biological tissues where effective surface
entrapment may be caused by close macromolecular contacts.
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Appendix A. Calculation of the dipolar correlation functions
GðmÞL ðsÞ and spectral densities JðmÞL ðxÞ for planar geometry

We outline here the main steps of the calculations of the pair-
wise dipolar correlation functions GðmÞL ðsÞ and spectral densities
JðmÞL ðxÞ for an interfacial layer following the earlier work [33].
The integral average of the dipole–dipole interaction over the
propagator of diffusion is given in the laboratory frame (L) by Eq.
(5). To evaluate this equation the following steps were taken:

(i) The correlation functions in the laboratory fixed coordinate
system (L) are related to their counterparts in the molecular
axis system (M) by a series of Euler rotations:
GðmÞL ðsÞ ¼
Xþ2

m0¼�2

dð2Þ�m0 ;mðbÞ
��� ���2Gðm

0 Þ
M ðsÞ ðA1Þ

where dð2Þ�m0 ;mðbÞ denotes the (�m0, m) element of the second rank
Wigner rotation matrix for the transformation b [34]. The correla-
tion functions GðmÞM ðsÞ are given by an integral average over the
diffusion propagator in the frame (M) that are formally similar to
Eq. (5).

(ii) When considering translational diffusion of the I-spin mole-
cules in the quasi two-dimensional geometry of Fig. A1, the
anisotropy of the dynamics is described by an unbounded
and isotropic (independent of /) diffusion perpendicular to
the normal axis n and a bounded diffusion parallel to the
normal. With this model, the normalized diffusive propaga-
tor P in the molecular frame (M) is defined as a product of
bounded P// and unbounded P? factors
Pðq; z; sjq0; z0;0Þ ¼ P?ðq; sjq0; 0ÞP==ðz; sjz0;0Þ ðA2Þ

The bounded propagator P// is given by the solution of a 1-
dimensional diffusion equation with no flux out of the layer. The
Gaussian unbounded propagator P? is expressed by its Fourier
transform in the reciprocal k space [35]:

P==ðz;sjz00Þ�1
k
½1þ2cosðpz=kÞcosðpz0=kÞexpð�DI==s=k2Þþ����

P?ðq;sjq0;0Þ¼
1

2p
Xþ1

m¼�1

Z 1

0
dkkexpð�k2DI?sÞjmðkqÞjmðkq0Þexp½imðu0�uÞ�

ðA3a;bÞ
Here DI==and DI? are the translational diffusion coefficients of spin I
in the direction parallel and perpendicular to n and the jm(kq) are
cylindrical Bessel functions of order m.

(iii) We are only interested in the situations encountered at
times long compared with the translational correlation time;
i.e., s!1 (or low frequency). In Eq. (A3a), P// thus simplifies
to the inverse of the ‘‘volume’’ (1/k visited with the boundary
conditions of zero flux along the n direction on the two lim-
its of the layer of size k [35]. In Eq. (A3b), only the long wave-
length transverse diffusing modes (k ? 0) dominate for time
s much longer than the translational correlation time
sm ¼ d2=ð4DI?Þ; where d is the mean molecular size of the
I-spin-bearing molecule. The diffusion propagator in the
molecular axis system, Pðq; z; s q0; z0;0j Þ ¼ P?ðq; s q0;0j Þ
P==ðz; s z0;0j Þ, is then substituted into the integral definition
of Gðm

0 Þ
M ðsÞwith fm0 2 ð�2;þ2Þg, giving at long times

(s� sm),

Gðm
0 Þ

M ðsÞ ¼ 2prS

k2

Z 1

0
dkk expð�k2DI?sÞj

Z
dz

�
Z

dq qjmðkqÞf
ðm0 Þ
2 ðq; zÞj2 ðA4Þ

Here f ðm
0 Þ

2 ðq; zÞ is the dipolar interaction expressed in the cylindrical
coordinates of the molecular frame (M). We have separated the
integral calculations in Eq. (A4) into two domains M1 ¼ fd 6 z
6 k and 0 6 q <1g and M2 ¼ f0 6 z 6 d and d0 6 q <1g
(Fig. A1). The integrals simplify for times s much longer than the
diffusion correlation time sm.

This approximation permits considering only the dominant
term coming from the long wavelength two-dimensional trans-
verse modes kd0 ! 0 when s� sm in the exponential part
exp½�ðkd0Þ2x2s=ð4smÞ� of Eq. (A4). After some calculations, one finds
that the leading terms come from the two-dimensional part of
Gð0ÞM ðsÞ integrated only over the M2 domain:

Gð0ÞM ðsÞ�
3prS

2k2d02
1

1þx2

sm

s

� �
� 2

ffiffiffiffi
p
p

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2
p sm

s

� �ð3=2Þ
þ2

3þ4x2

x2ð1þx2Þ
sm

s

� �2
þ :::

� �

Gð1ÞM ðsÞ¼Gð2ÞM ðsÞ�O
sm

s

� �2
� 	

ðA5a;bÞ
At long times (s� sm), corresponding to the low frequency

range studied, all the other terms integrated within the M1 domain
behave at long times as (sm/s)2 and thus will be neglected in com-
parison with the leading term of Gð0ÞM ðsÞ integrated within the M2

domain:

Gð0ÞM ðsÞ �
3prS

2k2d02ð1þ x2Þ
sm

s

� �
ðA6Þ

(iv) The dipolar correlation function Gð0ÞM ðsÞ must also fulfil the
requirements [24] that (a) At short times, when s ? 0, Gð0ÞM ðsÞ
must tend to a finite constant C, such as Gð0ÞM ð0Þ ¼

R1
�1 Jð0ÞM

ðxÞdx ¼ C, where Jð0ÞM ðxÞ is the spectral density function; (b)
At long time Gð0ÞM ðsÞ must behave as 1/s, characteristic of the
two-dimensional translational diffusion relaxation process,
and the effect of the finite residence time, sS, at the protein sur-
face is included as an exponential cut-off Gð0ÞM ðsÞ / ðC=sÞ
expð�s=sSÞ; (c) The form of Gð0ÞM ðsÞ on the time scale
0 6 s 	 sm
 sS is characterized by the correlation time for
the surface diffusion events.

These requirements lead to the following expression of the cor-
relation function Gð0ÞM ðsÞ which is, as expected, always positive:

Gð0ÞM ðsÞ � C
sm

s
exp � s

sS


 �
� exp � s

sm


 �� 	
when sm 
 sS ðA7Þ

Straightforward calculations give C ¼ 3prS=½2k2d02ð1þ x2Þ�.
The spectral density function is thus given by the exponential

Fourier transform of Eq. (A7):

Jð0ÞM ðxÞ ¼
3prS

2k2d02ð1þ x2Þ
sm ln

1þx2s2
m

ðsm=sSÞ2 þx2s2
m

" #
: ðA8Þ

(v) Last, we make a powder average of JðmÞM ðxÞ over all the orien-
tations b of the (M) frame relative to the constant direction
of B0 and obtain the average spectral densities:
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Jð0ÞL ðxÞ
D E

¼ Jð1ÞL ðxÞ
D E

¼ Jð2ÞL ðxÞ
D E

� 1
5

Jð0ÞM ðxÞ: ðA9Þ

Substitution of Eq. (A8) into Eq. (A9), finally gives the powder aver-
age of the spectral density in the laboratory frame (L):

JðmÞL ðxÞ
D E

¼ 3prS

10k2d02ð1þ x2Þ
sm ln

1þx2s2
m

ðsm=sSÞ2 þx2s2
m

" #
ðA10Þ
Appendix B. Change to solution concentrations

Beginning with Eq. (6) with B ¼ ðcics�hÞ
2 S(S + 1), and D? ¼ d2

4sm
,

rearrangement gives

1
T1;2DðxIÞ

¼ p
15

rSd
2

ðk24D?d
02ð1þ x2ÞÞ

" #
B 3 ln

1þx2
I s2

m

ðsm=ssÞ2 þx2
I s2

m

 !"

þ7 ln
1þx2

Ss2
m

ðsm=ssÞ2 þx2
Ss2

m

 !#
ðB1Þ

With Ns the number of electron spins per protein molecule and Ap

the surface area of the protein, rs = Ns/Ap. We write the probability
that the diffusing molecule is at the surface as the mass of liquid in
the surface layer per protein molecule times the number of protein
molecules per unit mass of solution:

Psurf ¼ ðApkqÞðnp=g solnÞ ðB2Þ

where np is the number of protein molecules and the total solution
mass is 1 g or 1 cm3 for water with density q. With [P] representing
the concentration of protein in mol/L, and NA Avogadro’s constant,

np ¼ NA½P�=1000q: ðB3Þ

Substitution gives Psurf = ApkNA[P]/1000. Substitution then yields

Psurf

T1;2D
¼ p

60
NsBx2

Apk
2D?ð1þ x2Þ

ApkNA½P�
1000

3 ln
1þx2

I s2
m

ðsm=ssÞ2 þx2
I s2

m

 !"

þ7 ln
1þx2

Ss2
m

ðsm=ssÞ2 þx2
Ss2

m

 !#
ðB4Þ

With Ns[P] = [S],

Psurf

T1;2D
¼ p

60
Bx2

kD?ð1þx2Þ

� NA½S�
1000

3 ln
1þx2

I s2
m

ðsm=ssÞ2þx2
I s2

m

 !
þ7 ln

1þx2
Ss2

m

ðsm=ssÞ2þx2
Ss2

m

 !" #

ðB5Þ
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